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Genetic variation: we're all mutants!

Each newborn has ~ 70 new
mutations:

P Average mutation rate
~ 1.1 x 1078 /base/generation
P Higher in male lineage, with age
P Number of bases in genome
~ 3.2 x 109, x2 for both copies
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Types of mutations

Single nucleotide variant
Insertion—deletion variant
Block substitution
Inversion variant

Copy number variant

ATTGGCCTTAAC CC CGATTATCAGGAT
ATTGGCCTTAAC cﬂc CGATTATCAGGAT

ATTGGCCTTAACCCEATCCGATTATCAGGAT
ATTGGCCTTAACCCE=SJCCGATTATCAGGAT

ATTGGCCTTAACECCCGATTATCAGGAT
ATTGGCCTTAACEGIGGATTATCAGGAT

ATTGGCCTTRACCCCCGATTATCAGGAT

ATTGGCCTTCECCCCTTATTATCAGGAT

ATTGGCCTTAGGCCTTAACCCCCGATTATCAGGAT

Frazer et al. (2009)

P SNP = single nucleotide polymorphism
P Indel = insertion or deletion
P Structural variant = also large edits (gene or chr level)

Structural variants
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Functional consequences of genetic variation

P Protein-coding mutation types

Point mutations
|

No mutation
Silent Nonsense Missense
conservative non-conservative
DNA level TTC TTT ATC TCC TGC
mRNA level AAG AAA UAG AGG ACG
protein level Lys Lys STOP Arg Thr
5 N s “
0 %

Jonsta247, CC BY-SA 4.0, via Wikimedia Commons

P Non-coding mutations can affect
gene expression

P Most are neutral:
P Reveal relatedness and

population history

P A small proportion cause disease

P> Smallest proportion are beneficial
P New adaptation!
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Dynamics of genetic variation

oondifion  BOTTLENECK EVENT — ,wnvivihd

Colors are alleles
By Gabi Slizewska

T
new.
population

P Most new mutations
are lost
P Some become common
in population
P Outcomes are
random
P> Variation greatest in
small populations
P> Even disease alleles
can become
common
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Human genetic structure: a typical SNP
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Ochoa and Storey (2019a) doi:10.1101/653279

rs17110306; median differentiation given MAF > 10%

Why? Migration and isolation, admixture, family structure

0.3

0.1

Allele frequency
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https://doi.org/10.1101/083915

Single Nucleotide Polymorphism (SNP) data
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Single Nucleotide Polymorphism (SNP) data

Genotype x;;

CC 0

CT 1

= TT 2
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Single Nucleotide Polymorphism (SNP) data

Individuals
0221101
02101
2 ...
Genotype x;; -
cC 0 S
-
CT 1
= TT 2 =
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Hardy-Weinberg Equilibrium (HWE): Binomial draws

x;; = genotype at locus ¢ for individual j.

p; = frequency of reference allele at locus .

8/33



Hardy-Weinberg Equilibrium (HWE): Binomial draws

x;; = genotype at locus ¢ for individual j.

p; = frequency of reference allele at locus .

Under HWE:
Pr(z;; = 2) = p?,
Pr(z;; =1>=2p (1—p;),
Pr(z;; =0) = (1—p,;)".
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Hardy-Weinberg Equilibrium (HWE): Binomial draws

x;; = genotype at locus ¢ for individual j.

p; = frequency of reference allele at locus .

Under HWE:
Pr(z;; = 2) = p?,
Pr(z;; =1>=2p (1—p;),
Pr(z;; =0) = (1—p,;)".

HWE not valid under genetic structure!
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Dependence structure of genotype matrix

Individuals

0221101
02101
2.

Loci

High-dimensional binomial data
P No general likelihood function
P My work: method of moments
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Dependence structure of genotype matrix

Individuals

0221101
02101
2 ..

Loci

High-dimensional binomial data
P No general likelihood function
P My work: method of moments

Relatedness / Population structure
P Dependence between individuals (columns)

Linkage disequilibrium
P> Dependence between loci (rows)
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Genetic association study: genotype-phenotype correlation
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Genetic association study: genotype-phenotype correlation
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Genetic association study: genotype-phenotype correlation
As Table As Regression
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Genetic association study: genotype-phenotype correlation
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Genetic association study: genotype-phenotype correlation
As Table As Regression
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Nephrotic Syndrome association study
Severe pediatric kidney disease. 1000 cases/1000 controls; multiethnic

32+

HLA-DQB1
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“Manhattan” plots for other diseases
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Wellcome Trust Case Control Consortium (2007)
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This problem is hard!

After the human genome (~2000), researchers thought that was the hard part.
Nope!
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This problem is hard!

After the human genome (~2000), researchers thought that was the hard part.
Nope!

The missing heritability problem:
P Height is highly heritable

P h? ~ 80%: variance explained by genetics, according to twin/sib studies.
P> But significant variants only explain 3% of this heritability.

P Do we need bigger studies? Some as large as 1M people don't find much!

P> Are most causal variants rare? (causes low statistical power)

P Is significance too stringent of a criterion?

P Could it be epigenetic? Shared environment?
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Why is this problem so hard?
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Why is this problem so hard?

P Millions of tests

P> Polygenicity (many causal variants)
P Confounders
P> Incorrect assumptions: independence / additivity
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Why is this problem so hard?

P Millions of tests

P> Polygenicity (many causal variants)
P Confounders
P> Incorrect assumptions: independence / additivity

Ancestry
Genetics
/ \ Environment
Test Locus All other loci

Nt

Trait
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Effects are smaller and rarer than anticipated

0dds Ratio
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Genetic architecture of a trait

Low-frequency
variants with
intermediate effect

Rare variants of
small effect
very hard to identify
by genetic means

Allele frequency

Figure 1| Feasibility of identifying genetic variants by risk allele frequency
and strength of genetic effect (odds ratio). Most emphasis and interest lies
in identifying associations with characteristics shown within diagonal dotted
lines. Adapted from ref. 42.

Manolio et al. (2009) Nature 461:747-753
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Goal: association, not causation!

P Ideally, we'd actually find the
causal variants of disease
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Goal: association, not causation!
Dx. SNP

Ancestor
allele allele

Present-day

P Ideally, we'd actually find the
causal variants of disease

P However, causal variants are likely
not genotyped

P Linkage Disequilibrium: variants
near the causal locus are correlated
to each other and to the disease!

Fig. by Andrew Allen, Duke B&B.
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One problem with no causation: prediction outside test pop.

P> Association depends on correlation between the tested and causal loci
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One problem with no causation: prediction outside test pop.

P> Association depends on correlation between the tested and causal loci
P> But correlation varies in populations! So associations may not be predictive
P Common scenario:
P In European-only study, locus i is significantly associated with disease
P Locus i is not correlated to causal locus in Sub-Saharan Africans
P So locus i does not predict disease in Sub-Saharan Africans
P Why? Correlations are stronger outside Africa due to population bottleneck
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Modern technologies for finding variants

Genotyping arrays vs sequencing
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Modern technologies for finding variants

Genotyping arrays vs sequencing
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Modern technologies for finding variants
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Modern technologies for finding variants

Genotyping arrays

P Oldest and cheapest of the two we discuss here
P Used by 23andMe, Ancestry, etc.
P Pros:
P 0.5-1.5 million loci per array
P Low missingness
P Cons: tests known variants only, a biased set
P Most often common variants only
P> Preiously: biased for variants common in European ancestry
P Typically biallelic SNPs (Single Nucleotide Polymorphisms) only
P Unlikely to contain causal variants
P> Some probes fail = batch effects
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Modern technologies for finding variants

Whole genome sequencing

21/33



Modern technologies for finding variants

Whole genome sequencing

P Short read sequencing at 2x to 30x depths common

21/33



Modern technologies for finding variants

Whole genome sequencing

P Short read sequencing at 2x to 30x depths common
P Variant: whole exome sequencing (enriched for protein-coding sequences).

21/33



Modern technologies for finding variants

Whole genome sequencing

P Short read sequencing at 2x to 30x depths common
P Variant: whole exome sequencing (enriched for protein-coding sequences).
P Pros:

P More likely to include causal variants

P Can see short insertions and deletions too (indels)

P Can impute missing data assuming correlations

21/33



Modern technologies for finding variants

Whole genome sequencing

P Short read sequencing at 2x to 30x depths common

P Variant: whole exome sequencing (enriched for protein-coding sequences).

P Pros:
P More likely to include causal variants
P Can see short insertions and deletions too (indels)
P Can impute missing data assuming correlations
» Cons:
P> Still misses repetitive regions, large (structural) variants
P Need special methods for rare variants
P More expensive (for now)
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Modern technologies for finding variants

Microarrays

Whole genome seq

Cost/person (2019)
Loci

Missingness

Causal locus tested?

$50-100

0.5-1.5 M (fixed)
Low

Probably no

$700-1000

up to 80 M ? (random)
High

Probably yes
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Population structure: lack of independence between individuals

In classical association studies, every individual is treated as independent.
In a case-control study, we test for a bias in allele frequencies (X is a random

genotype):

X|case ~ Binomial(2, p.oee )

X |control ~ Binomial(2, p.ontrol)s
reject Hy if:  Pease 7 Peontrol-
However:

P> Allele frequencies often vary between human subpopulations
P> Disease prevalence may also vary between subpopulations (if causal loci also
vary in frequency across the world!)
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Median human locus by differentiation
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rs17110306; median differentiation among loci with minor allele frequency > 10%

Classical association tests assume allele frequency is the same across the world!
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https://doi.org/10.1101/083915

Kmshlp (covariance) matrix of world-wide human population

T g
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Kinship
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i
Ochoa and Storey (2019) doi:10.1101/653279
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https://doi.org/10.1101/653279

Ancestry as a statistical confounder
?

Genotype -------- ERREEEEE > Disease

Genetic Ancestry
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PCA:

PC2

Principal Component Analysis
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Moreno-Estrada et al. (2013)

0.05

Use top eigenvectors of covariance
matrix in any regression approach!
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PCA: Principal Component Analysis
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PCA:

PC2

Principal Component Analysis
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PCA:

PC2

Principal Component Analysis

ST m MEX ’ o NativeAm Use top eigenvectors of covariance
3 - : o an matrix in any regression approach!
e
€1 e DOM oS 43;1
* PUR ’ PCs map to ancestry.
g o HAI R ]
* .I
1 * "PCs" are top eigenvectors of
3 o kinship matrix.
Y Pros: Fast!
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Cons: Fails on family data.
Moreno-Estrada et al. (2013)

27/33



Genetic association for structured pops: PCA and LMM
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Genetic association for structured pops: PCA and LMM

Association with Principal Components Analysis (PCA)
and Linear Mixed-effects Model (LMM):

PCA : y=1la+x,6+U;y, +¢
LMM : y=1la+x,0+s+e

U, are top d eigenvectors of kinship matrix ®.
s ~ Normal (0, 02®).

P PCA is faster but low-dimensional
P LMM is slower but can model families

Yao and Ochoa (2022) doi:10.1101/2022.03.25.485885
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PCA < LMM in association for real datasets
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Numerous distant relatives in real datasets
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https://doi.org/10.1101/2022.03.25.485885

Numerous distant relatives in real datasets explain PCA < LMM
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What happens after we find significant loci?
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What happens after we find significant loci?

Recall we probably do not have causal locus (unless using deep sequencing).

P> Verify association in a validation dataset (disjoint from initial study)
P> Fine mapping: sequence region and retest

P Beware “winner's curse”
P Validate experimentally (animal model, tissue culture)

Association variants are hard to interpret without experiments:

P 3% of human genome is protein-coding (most interpretable)
P Most non-coding sequences are of unknown function

P> Except: promoters, enhancers, splice sites, etc
P Link intergenic variant to closest gene often incorrect!
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What happens after we find significant loci?

P .. and then, variant/gene might suggest a treatment the disease
P Test treatment in vitro &

P Test on an animal model -

P Test on humans &)

P Make money £8
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