# F<sub>ST</sub> generalized for arbitrary population structures ICAhN Think & Drink

Alejandro Ochoa and John D. Storey

Center for Statistics and Machine Learning, and Lewis-Sigler Institute for Integrative Genomics, Princeton University

2016-03-02

 $F_{ST}$  and "island" models



Illustration (not real data)

## Allele frequencies in human populations



## Admixture in human populations



#### Our admixture simulation



#### Our contribution



Previous  $F_{ST}$  definitions/estimators assume subdivided, independent populations.

We generalize  $F_{ST}$  for **arbitrary populations**, in terms of **individuals**, using **inbreeding** and **kinship** coefficients.

We characterize the **bias** of popular **estimators**, through theory and simulations.

#### An unstructured population

Individuals mate randomly.

In a large population, genotypes

$$x_{ij} \sim \text{Binomial}(2, p_i),$$

at SNP i with reference allele frequency  $p_i$ , for any individual j.

This is "Hardy-Weinberg Equilibrium".



#### Inbreeding coefficient $f_i$

Probability that the two alleles of individual j at a random SNP are "identical by descent" (IBD) **given** an ancestral population.



## Kinship coefficients $\varphi_{jk}$

Probability that one allele of individual j and one of individual k, at a random SNP, are IBD, **given** an ancestral population.

## Local kinship, given unrelated founders

| j, k relation   | $arphi_{jk}$ |
|-----------------|--------------|
| self            | 1/2          |
| child           | 1/4          |
| sibling         | 1/4          |
| half sibling    | 1/8          |
| uncle or nephew | 1/8          |
| first cousins   | 1/16         |
| second cousins  | 1/64         |
| unrelated       | 0            |
|                 |              |

### Populations related by a tree



 $F_{ST}$  in a subdivided population: Wright (1951)



#### Comparison of models assumed for $F_{ST}$ estimation



#### Kinship model for genotypes

Let T be the ancestral population. In the absence of selective pressures, allele frequencies drift randomly from the ancestral frequency  $p_i^T$ , with covariances modulated by the kinship coefficients:

$$egin{aligned} \mathsf{E}[x_{ij}|T] &= 2oldsymbol{p}_i^T, \ \mathsf{Var}(x_{ij}|T) &= 2oldsymbol{p}_i^T(1-oldsymbol{p}_i^T)(1+f_j^T), \ \mathsf{Cov}(x_{ij},x_{ik}|T) &= 4oldsymbol{p}_i^T(1-oldsymbol{p}_i^T)oldsymbol{\varphi}_{jk}^T. \end{aligned}$$

Note that  $\varphi_{jj}^T = \frac{1}{2}(1 + f_j^T)$ .

(Wright 1921, Malécot 1948, Wright 1951, Jacquard 1970).

#### Individual-level analogs of $F_{IT}$ , $F_{IS}$ , $F_{ST}$

"Total" coef., analogous to  $F_{\text{IT}}$ :  $f_i^T$  and  $\varphi_{ik}^T$  are relative to T.

"Local" coef., analogous to  $F_{IS}$ :  $f_i^{L_j}$  is relative to  $L_i$ ,

 $\varphi_{jk}^{L_{jk}}$  is relative to  $L_{jk}$ .

"Structural" coef., analogous to  $F_{\mathsf{ST}}$ :

$$egin{align} f_{\mathcal{L}_j}^{\mathcal{T}} &= rac{f_j^{\mathcal{T}} - f_j^{\mathcal{L}_j}}{1 - f_j^{\mathcal{L}_j}}, \ f_{\mathcal{T}}^{\mathcal{T}} &= rac{arphi_{jk}^{\mathcal{T}} - arphi_{jk}^{\mathcal{L}_{jk}}}{2 + 2 \cdot 2 \cdot 2 \cdot 2}. \end{split}$$



### $F_{ST}$ for arbitrary population structures

We propose

$$F_{\mathsf{ST}} = \sum_{j=1}^{n} w_j f_{L_j}^T,$$

where  $\sum_{j=1}^{n} w_j = 1$  are non-negative weights.

Backward compatible with island models (needs specific weights), and coherent with Wright's original definition.

Local inbreeding is removed on an individual basis!

#### "Coancestry" model and individual allele frequencies

This restricted model assumes the existence of "individual-specific allele frequencies"  $\pi_{ij}$ , modulated by "coancestry" coefficients  $\theta_{jk}^T$ :

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} E[\pi_{ij}|T] &= oldsymbol{p}_i^T, \ \mathsf{Cov}(\pi_{ij},\pi_{ik}|T) &= oldsymbol{p}_i^T(1-oldsymbol{p}_i^T) heta_{jk}^T. \end{aligned}$$

This model excludes local relationships. Given these assumptions, coancestry and kinship coefficients are the same:

$$\theta_{jk}^{T} = \begin{cases} \varphi_{jk}^{T} & \text{if} \quad j \neq k, \\ 2\varphi_{jj}^{T} - 1 = f_{j}^{T} & \text{if} \quad j = k. \end{cases}$$

#### $F_{ST}$ estimation under the island model

Weir-Cockerham and Hudson  $F_{ST}$  estimators using  $\pi_{ij}$ 's reduce to

$$egin{aligned} \hat{
ho}_i &= rac{1}{n} \sum_{j=1}^n \pi_{ij}, \ s_i^2 &= rac{1}{n-1} \sum_{j=1}^n (\pi_{ij} - \hat{
ho}_i)^2, \ \hat{F}_{ ext{ST}}^{ ext{island}} &= rac{\sum_{i=1}^m s_i^2}{\sum_{i=1}^m \hat{
ho}_i (1 - \hat{
ho}_i) + rac{1}{n} s_i^2} \ &rac{a.s.}{m 
ightarrow \infty} F_{ ext{ST}}. \end{aligned}$$

Under the island model,  $F_{ST}$  can be solved for:

$$\mathsf{E}\left[rac{1}{m}\sum_{i=1}^{m}s_{i}^{2}
ight] = \overline{p(1-p)}F_{\mathsf{ST}},$$
  $\mathsf{E}\left[rac{1}{m}\sum_{i=1}^{m}\hat{p}_{i}(1-\hat{p}_{i})
ight] = \overline{p(1-p)}\left(1-rac{F_{\mathsf{ST}}}{n}
ight)$ 

## $F_{ST}$ estimation under arbitrary coancestry

Weir-Cockerham and Hudson  $F_{ST}$  estimators using  $\pi_{ij}$ 's reduce to

$$egin{aligned} \hat{
ho}_i &= rac{1}{n} \sum_{j=1}^n \pi_{ij}, \ s_i^2 &= rac{1}{n-1} \sum_{j=1}^n (\pi_{ij} - \hat{
ho}_i)^2, \ \hat{F}_{ ext{ST}}^{ ext{island}} &= rac{\sum_{i=1}^m s_i^2}{\sum_{i=1}^m \hat{
ho}_i (1 - \hat{
ho}_i) + rac{1}{n} s_i^2} \ &rac{ ext{a.s.}}{m o \infty} rac{n \left(F_{ ext{ST}} - ar{ heta}
ight)}{n-1 + F_{ ext{ST}} - nar{ heta}} \end{aligned}$$

Under the general coancestry model, system is underdetermined:

$$\mathsf{E}\left[rac{1}{m}\sum_{i=1}^{m}s_{i}^{2}
ight] = \overline{p(1-p)}rac{n(F_{\mathsf{ST}}-ar{ heta})}{n-1},$$
  $\mathsf{E}\left[rac{1}{m}\sum_{i=1}^{m}\hat{
ho}_{i}(1-\hat{
ho}_{i})
ight] = \overline{p(1-p)}(1-ar{ heta}).$ 

 $\bar{\theta}=$  mean coancestry. In islands,  $\bar{\theta}=\frac{1}{n}F_{\rm ST}.$ 

#### Bias estimating kinship/coancestry coefficients

The popular kinship estimator from genotypes, and its limit as  $m \to \infty$ , are

$$\hat{\varphi}_{jk} = \frac{\sum_{i=1}^{m} \left(x_{ij} - 2\hat{p}_i\right) \left(x_{ik} - 2\hat{p}_i\right)}{4\sum_{i=1}^{m} \hat{p}_i (1 - \hat{p}_i)} \xrightarrow[m \to \infty]{\text{a.s.}} \frac{\varphi_{jk} - \bar{\varphi}_j - \bar{\varphi}_k + \bar{\varphi}}{1 - \bar{\varphi}},$$

where  $\bar{\varphi}_j$  and  $\bar{\varphi}$  are weighted mean kinships. Bias in our admixture simulation:



#### Bias estimating the generalized $F_{ST}$

A "simple"  $F_{ST}$  estimator, derived from  $\hat{\theta}_{ii}$ , is also biased as  $m \to \infty$ :

$$\hat{F}_{\mathsf{ST}} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} w_j (\pi_{ij} - \hat{p}_i)^2}{\sum_{i=1}^{m} \hat{p}_i (1 - \hat{p}_i)} \xrightarrow[m \to \infty]{\mathsf{a.s.}} \frac{F_{\mathsf{ST}} - \bar{\theta}}{1 - \bar{\theta}}.$$

WC and Hudson  $F_{ST}$  estimators are similarly biased in our admixture simulation:



#### In this work, we...

...generalized  $F_{ST}$  using IBD probabilities for individuals.

...connected  $F_{ST}$ , kinship coefficients, and admixture models.

...proved almost sure convergence of simple estimators to biased quantities.

...used an admixture simulation to illustrate biases.

Our models could lead to more robust estimators.

#### Thanks!

#### John D. Storey

Andrew Bass Irineo Cabreros Chee Chen Sean Hackett **Wei Hao** Emily Nelson

**Neo Christopher Chung** (Wroclaw University of Life Sciences)



